FM1 and FM2 Edition3 Spectral Darkening Correction & Validation

Nitchie Manalo-Smith, Norman G. Loeb, Susan Thomas, Kory Priestley, Dale Walikainen, Phil Hess, Mohan Shankar and Peter Szewczyk

> 12th CERES Science Team Meeting November 2-4, 2009 Fort Collins, CO

Edition3 Studies

- Spectral response degradation in SW channel
 - determine time-dependent "optimal" SRFs from Direct Compare approach
 - incorporate temporally varying SRFs in the SW measurements (implemented in spectral unfiltering algorithm)
- Divergence between daytime and nighttime OLR records with time

❖Instrument operating in RAPS mode drops in SW response relative to instrument operating in cross-track mode.

Strategy for Characterizing Spectral Degradation (Direct Nadir Radiance Comparison)

- Assume any temporal variation in FM2/FM1 SW unfiltered radiance ratio is caused by changes in spectral response function (SRF) only.
- •Assume SRF changes occur only when instrument is in RAP mode.
- Compare spatially/temporally matched nadir FM1 and FM2 footprint radiance pairs (Clear ocean shows largest sensitivity to RAPS spectral darkening).
- Apply gains to Xtrack and RAP instruments.
- For instrument in Xtrack mode, unfilter with previous month's SRF.
- From a set of candidate SRFs with varying degrees of spectral darkening, retrieve RAP SRF that ensures constant SW unfiltered FM2/FM1 radiance ratio throughout the mission.

- **❖Spectral degradation function similar to that observed in other missions (e.g. GOME, LDEF)**
- ❖ Spectral darkening increases with shorter wavelengths.
- ❖Plot shown is only a subset of the 53 "candidate" SRFs.

Approximate Relationship between Spectral Darkening Parameter and SW Radiance Changes since BOM

SW Degradation Parameter, α, Derived from Clear and All-sky Ocean Direct Compare Method

Alpha Retrieval Results

FM2/FM1 SW Unfiltered Radiance Ratio for Clear Sky Scenes

* Ed1_CV and BOM(new) SRF – no attempt to correct for spectral darkening *Simple model works for all scene types.

FM2/FM1 SW Unfiltered Radiance Ratio for All Sky Scenes

CERES & SeaWiFS Comparison (All-Sky Ocean; 30°S-30°N)

CERES Anom Minus SeaWiFS Anom: -0.106 ± 0.2 Wm⁻² per decade

CERES Variability (1 σ) = 0.79 Wm⁻²

SeaWiFS Variability (1 σ) = 0.76 Wm⁻²

 $\sigma(CERES - SeaWiFS) = 0.21 Wm^{-2}$

❖ Shows consistent calibration stability at < 0.3 Wm² per decade (95% conf)

SW TOA Flux (FM1; Clear-Sky; Ocean)

SW TOA Flux (FM1; All-Sky; All Surfaces)

Tropical Mean: LW Day Night Difference Trends

Tropical Mean Day - Night Flux Difference

FM1 Zonal Averages of Unfiltered Radiances for All-Sky Ocean (30S – 30N)

LW Day Night Difference Trends

$$LW_{day} = Total - Shortwave$$

 $LW_{night} = Total$

- Apply Total and WN gains.
- With SW spectral darkening compensated for by selected SW optimal SRFs, select Total SRF from a "candidate" set of SRFs that eliminates monthly offsets from Beginning of Mission (BOM).

Determining the Optimal Total SRF with Δ LW and Δ WN Unfiltered Radiances

Global Daytime and Nighttime LW TOA Flux (FM1; All-Sky; All Surfaces)

LW TOA Flux (FM1; Edition3; All-Sky; All Surfaces)

Summary

- Direct Compare method to select time-dependent 'optimal'
 SRFs was implemented to characterize spectral darkening.
 Application of monthly SRFs to all scene types removed SW degradation trend.
- There are no significant day night differences after Total channel optimal SRFs are applied.
- Excellent agreement between CERES and SeaWiFS anomaly trends in the tropical region .

Edition2 Calibration Studies

Residual calibration errors in CERES Edition2 data products are dominated by spectral degradation of sensor optics in the reflected solar bands (SW and SW/TOT)

- Decreasing trend in the reflected solar measurements
- Divergence between daytime and nighttime LW fluxes with time

Fred Rose

FM1 Zonal Averagse (16S – 16N) for Ocean

FM1 Zonal Averages of Unfiltered Radiances for All-Sky Ocean (30S – 30N) for March 2007

Determining the Optimal Total SRF with ΔL and ΔWn Unfiltered Radiances

